Nanomaterials as an occupational risk in metal additive manufacturing

Marta Sousa¹,², Pedro Arezes¹, Francisco Silva¹,³

¹ ALGORITMI Research Center, School of Engineering, University of Minho
² Technological Center for the Metal Working Industry
³ CTCV – Technological Center for Ceramics and Glass

Grenoble, 9th November 2018
AGENDA

- Wide approach to Additive Manufacturing (AM)
- Occupational exposure to nanomaterials during AM processes
- Risk assessment of occupational exposure to nanomaterials
- Risk assessment of exposure to nanomaterials during AM processes
- Conclusions
- Next steps
Additive Manufacturing

“Process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies.”

(ISO/ASTM 52900:2015)

- **Goal**: create three-dimensional parts by successive additions of materials
Benefits

- Variety of raw materials and applications;
- Single machine for all process, no need to use additional dies;
- Less waste;
- Customized parts;
- …

Disadvantages

- Inability to mass production;
- Often time-consuming process and high investment;
- Risks not yet sufficiently known;
- …
Metal additive manufacturing

- Different raw materials;
- Impact on health and safety related mainly to particulate emissions: coarse, fine and ultrafine;
- Health effects of metal nanoparticles are well-known hazards in other metal processing activities such as welding.
AND SO RESEARCH BEGINS
EXPOSURE TO NANOMATERIALS

START
Exposure to Nanomaterials: What’s the risk?

OCCUPATIONAL EXPOSURE TO NANOMATERIALS

- Toxic effects
- Impact on human health
- Environmental impact
- Challenges

Nanomaterials as an occupational risk in metal additive manufacturing
M. Sousa, P. Arezes, F. Silva
Quantitative methods

- Several alternatives to assess exposure, based on:
 - Number concentration;
 - Mass concentration;
 - Morphology;
 - Chemical composition;
 - ...
Obstacles on the way

Quantitative methods

- Difficult to choose the most appropriate methods;
- Difficult to choose the most proper sampling techniques;
- Specific equipment is required and has some limitations;
- OELs are not defined for all nanomaterials;
-
Qualitative and semiquantitative methods

- Control Banding Nanotool
- Stoffenmanager Nano
- Anses Tool
- NanoSafer CB
- Precautionary Matrix for Synthetic Nanomaterials
- Monte Carlo Simulation Model
- Decision Tree Analysis, Multicriteria Decision Analysis
- Bayesian Analysis
- Systematic Design Analysis Approach
- …
More obstacles on the way

Qualitative and semiquantitative methods

- Difficult to choose the most appropriate method;
- Applications are often specific;
- Difficult to gather some input data;
- Not yet validated.
Nanomaterials as an occupational risk in metal additive manufacturing
M. Sousa, P. Arezes, F. Silva
Focus on metal additive manufacturing and find out what’s already been done...
Occupational exposure to nanomaterials during metal additive manufacturing

- Diversity of raw materials and technologies;
- **Most common processes**: Power Bed Fusion and Direct Energy Deposition;
- Tasks that require direct contact with metal powder.
Literature review

- Published between 1990 – 2018;
- Peer reviewed publications;
- Written in English;
- Regarding emissions during metal AM;
- Real occupational conditions.
Literature review

RISK ASSESSMENT OF EXPOSURE TO NANOMATERIALS DURING METAL AM

STUDY #1

Aim
To use measuring techniques optimized for different particle sizes while analyzing numbers, sizes, masses and identities of metal particle emissions

Material
Chromium, nickel and cobalt alloy (both virgin and used powder)

AM Technique
Selective laser melting (SLM)

Quantitative Analysis
- **Nanotracer** (10 to 300 nm);
- **Lighthouse** (300 nm to 10 μm);
- **Traditional filter-based** particle mass estimation + inductively coupled plasma mass spectrometry

STUDY #2

Aim
To examine metal 3D printing, composite manufacturing and fabric production in terms of generated nano-sized by-products during production

Material
Nickel-base Inconel 939 (both virgin and used powder)

AM Technique
Selective laser melting (SLM)

Quantitative Analysis
- **Scanning electron microscopy (SEM)**
- **Energy Dispersive Spectrometer (EDS)**

Nanomaterials as an occupational risk in metal additive manufacturing
M. Sousa, P. Arezes, F. Silva
Risk Assessment of Exposure to Nanomaterials During Metal AM

<table>
<thead>
<tr>
<th>STUDY #1</th>
<th>STUDY #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULTS</td>
<td>RESULTS</td>
</tr>
<tr>
<td>• Nanosized particles are generated during metal AM;</td>
<td>• Nanosized particles are generated during metal AM;</td>
</tr>
<tr>
<td>• Operators are exposed mainly while handling powder;</td>
<td>• Presence of nanosized particles in samples with recycled powder.</td>
</tr>
<tr>
<td>• Particle sizes tended to be smaller in recycled powder.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECOMMENDATIONS</th>
<th>RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improve powder handling systems;</td>
<td>• Powder handling in a confined space;</td>
</tr>
<tr>
<td>• Measurement techniques for nanosized particles;</td>
<td>• Personal protective equipment;</td>
</tr>
<tr>
<td>• Work environment regulations;</td>
<td>• Good ventilation with HEPA filters;</td>
</tr>
<tr>
<td>• Personal protective equipment;</td>
<td>• Include information in the safety data sheet for powder intended to be used in metal 3D printing;</td>
</tr>
<tr>
<td>• Regular metal analyses of urine.</td>
<td>• Training for workers.</td>
</tr>
</tbody>
</table>
Studies prove that there is occupational exposure to nanomaterials during metal additive manufacturing;

Not many studies are available in this field, although AM is a promising and emergent technology;

Opportunity:
- Explore and improve occupational risk management in metal AM;
- Collect new relevant data to the scientific community;
- Provide a contribution to the protection of workers that are working with this recent technology in the metalworking field.
GOAL

Development of a risk management framework regarding the occupational risk of exposure to nanomaterials emitted during metal additive manufacturing processes.

There is a lot to work to do to get to the finish line...
NEXT STEPS

- **Data collection (case study):** raw materials, products generated, all tasks performed, ...;

- **Qualitative approach** (Control Banding & Systematic Design Analysis Approach*);

- **Quantitative approach** (CPC; SEM; ...);

- **Definition of control actions** to be implemented based on results;

- **Design of a risk management framework** for occupational risk of exposure to nanomaterials emitted during metal AM.

* Silva, Francisco, Arezes, Pedro, & Swuste, Paul (2015)
Thank you for your attention!

Marta Sousa
marta.sousa@catim.pt