In vitro human digestion test to monitor the dissolution of silver nanoparticles

pasquale.bove@iit.it

Grenoble, 8th November 2016
Increasing industrial production and use of commercial goods containing silver nanomaterials likely human oral exposure

Risk assessment model in conditions simulating human ingestion

Quantification of bioaccessibility/availability

products of biotransformation
- dissolved ions
- aggregates/agglomerates
- nanosized particles
The model

In vitro human digestion model:
It simulates the human digestion in the oral, gastric and intestinal compartments with salt and protein composition, pH differences and transit times alike the *in vivo* digestion.

Dynamic process

- 5 minutes
 - pH 6.8
- 120 minutes
 - pH 2.5
- 120 minutes
 - pH 6.5

=> **useful** analytical tool to measure bioaccessibility and bioavailability of drugs or food contaminants

Our aim

- **Size**
- **Dissolution**
- **Agglomeration**

surrounding environment
dependent properties
Our approach

- **NM300k** (*klein et al, 2011*): reference nanoparticles in many European projects in nanoregulatory context

- **Pre-Standard Operational Procedures (SOPs)**
 - material preparation
 - probe sonication
 - TEM grids
 - matrix juices
 - instrument use

- **Multi-technique approach**: to gain complementary information
 - TEM
 - DLS
 - UV-Vis
 - UF/ICP-AES
NM300k in dispersion medium

Panel A: Image showing dispersion medium with particles, with a measurement of particle size as $d: 15 \pm 5 \text{ nm}$.

Panel B1: Histogram showing major axis distribution with $d: 17 \pm 5.5 \text{ nm}$.

Panel B2: Histogram showing minor axis distribution with $d: 14 \pm 4.5 \text{ nm}$.

Panel C: Size distribution histogram with $H_0: 40 \pm 3 \text{ nm}$.

Panel D: Zeta potential distribution with $\zeta = -24 \pm 5 \text{ mV}$.

Panel E: Absorption spectrum with $\lambda_{abs} = 412 \text{ nm}$.
NPs almost show the primary size and tend to form agglomerated structures
AM300k in stomach

- NPs strongly reduce the mean diameter, as also evidenced by the lack of plasmonic peak, and dissolve

- Big agglomerates embedded in organic matrix
- Absence of UV signal for inorganic nanoparticles
- 2% of free ions available for intestinal adsorption
- Presence of big aggregates and few nanosilver salts of different nature
NM300k

Mouth

Stomach

Small intestine

19% free ions
81% matrix-bond ions

2% free ions
98% matrix-bond ions

90-100% dissolution

Pristine NM300K
Digestive proteins
Biotransformed NPs or nanosized salts
Ag⁺ ions
Organic Matrix
Inorganic matrix
Bile

Bove et al, submitted
Evaluation of test predictability (1)

This *in vitro* dissolution test may be relevant for the risk assessment of AgNPs:

1. majority of the initial NPs is dissolved in ions \Rightarrow NP exposure levels are similar to those of corresponding saline form

2. ions appear to be mostly bound to the matrix \Rightarrow they may follow the same excretion pathway of the saline silver
Evaluation of test predictability (2)

Read-across based hypothesis

<table>
<thead>
<tr>
<th>Ag excreted (in vitro)</th>
<th>Ag excreted (in vivo)</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>98%</td>
<td>60%</td>
<td>60-99%</td>
</tr>
<tr>
<td></td>
<td>(faeces)</td>
<td>(Bergin et al, 2016)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ag absorbed (in vitro)</th>
<th>Ag absorbed (in vivo)</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>0.06%</td>
<td>0.4-10%</td>
</tr>
<tr>
<td></td>
<td>(blood)</td>
<td>(Loeschner et al, 2011; van der Zande et al, 2012)</td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(urines)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.92%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(tissues)</td>
<td></td>
</tr>
</tbody>
</table>

Bove et al, submitted
Conclusions

The dissolution test may be a valid analytical tool for nanoregulation:

=> It allows to quantify the silver nanoparticles biotransformation, through read-across of saline form