

EVALUATION OF FABRIC PERFORMANCES FOR THEIR POTENTIAL USE AS FACE MASK DURING COVID19 CRISIS

Sebastien Jacquinot¹, Cécile Philippot¹, Sebastien Artous¹, Bastien Pellegrin¹, Arnaud Guiot¹, Simon Clavaguera¹, Joséphine Steck¹, Hervé Giraud¹, Samir Derrough¹

¹Univ. Grenoble Alpes, F-38000, Grenoble, France – CEA, Liten, DTNM, F-38054, Grenoble, France

Context :

During the Covid19 crisis, an unprecedented need arose for protective masks to supply the entire population. To this end, a new category of alternative masks has been created in France in addition to Surgical masks and Filtering Face Pieces (FFP). The Nanosafety Platform (PNS) staff rallied and adapted its facilities and devices to respond to the different demands of local SMEs for filter media characterization. In this context, two different experimental setups to measure the filtration efficiency were developed and implemented in addition to a permeability bench.

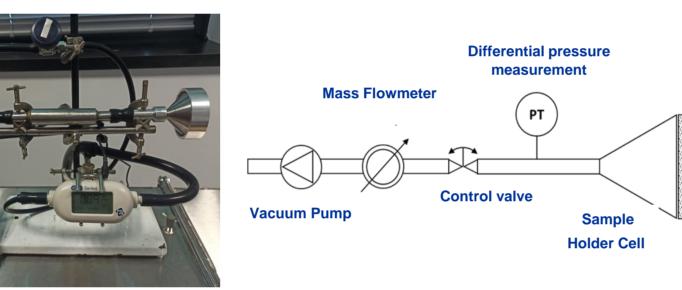
Key Parameters

Two key parameters to qualify facemask fabrics were assessed:

- the air permeability (or Breathability)
- the particle collection efficiency η (%)

Collection efficiency:

Represents the particle retention ratio of a filter for given challenge conditions :


$$\eta = 1 - \frac{C_{downstream}}{C_{upstream}}$$

Collection efficiency is a function of (particle challenge size, aerosol charging stage...) and test parameters (filtration velocity).

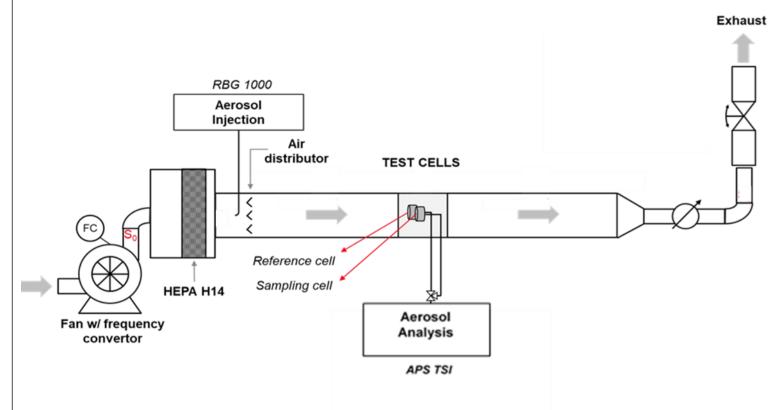
Air permeability:

Measurement of the air flow through a given surface sample for a pressure drop of 100 Pa

 \rightarrow Permeability in L.m⁻².s⁻¹ @ 100 Pa (according to ISO 9237: 1995)

Mask Classification

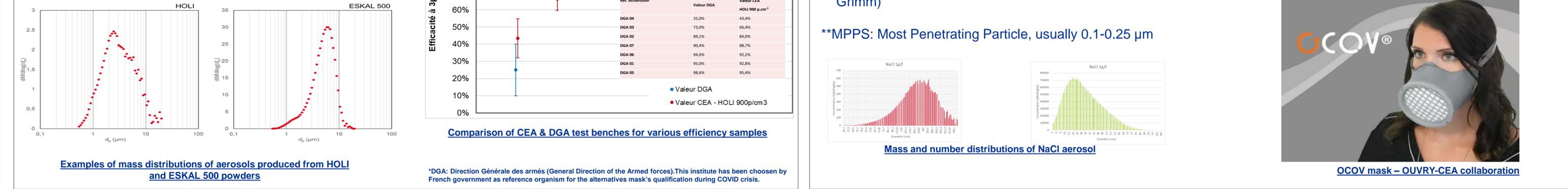
Exisiting standards versus face mask categories for non-sanitary use :


	Personal Protective Equipment PPE		Masks for Medical use (Surgical masks)			Alternative masks (masks for non-sanitary use, barrier masks, masks for the general public)	
	FFP2	FFP1	Type IIR ^e	Type II	Туре І	Category 1	Category 2
French Standards	NF EN 149:2001	NF EN 149:2001	NF EN 14683:2019	NF EN 14683:2019	NF EN 14683:2019	According to DGA + ISO 16170 protocol	According to DGA + ISO 16170 protocol
Minimum Filtration Efficiency	94%	80%	98%	98%	95%	90%	70%
Average aerosol size tested (μm)	0,6µm	3µm	3μm	Зµm	3µm	Зµm	3μm
Aerosol Type	Sodium chloride aerosol or paraffin oil mist	Sodium chloride aerosol or paraffin oil mist	Bacterial (Staphylococcus aureus)	Bacterial (Staphylococcus aureus)	Bacterial (Staphylococcus aureus)	Calcium Carbonate Aerosol	Calcium Carbonate Aerosol
Minimum Air Perméability (MAP)(en L/m2.s@100Pa)/ Differential Pressure(DP) (Pa.cm-2 @ 8 L.min-1)	resistance values (mb) at different flow rates,	several expiratory/inspiratory resistance values (mb) at different flow rates, before/after clogging	DP<40	DP<40	DP<60	MAP>96	MAP>96
Observations	Correspondence with different international standards	Correspondence with different international standards	Correspondence with an american standard		Correspondence with some american and chinese standards	New class. for France - Correspondence with some chinese standards	New classification for France

Ventilated tunnel for micron-sized testing

Objective

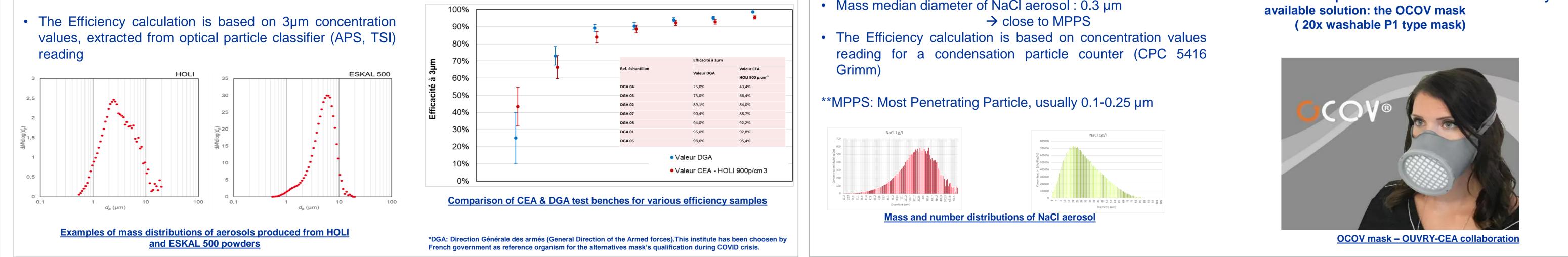
Evaluation of collection efficiency for **3µm challenge particles**. Most of the media / fabrics tested are intended for alternative masks manufacturing. The bench can also be used as a first response for quality control of surgical masks / FFP.


Bench Description

Flow diagram of the ventilated tunnel

Aerosol Type and Description

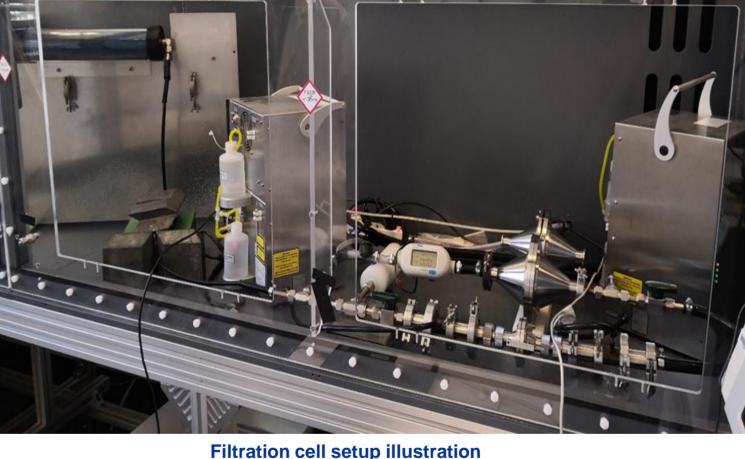
- A polydisperse aerosol is produced from CaCO₃ powders, using a rotary brush aerosol generator (PALAS, RBG)
- values, extracted from optical particle classifier (APS, TSI) reading

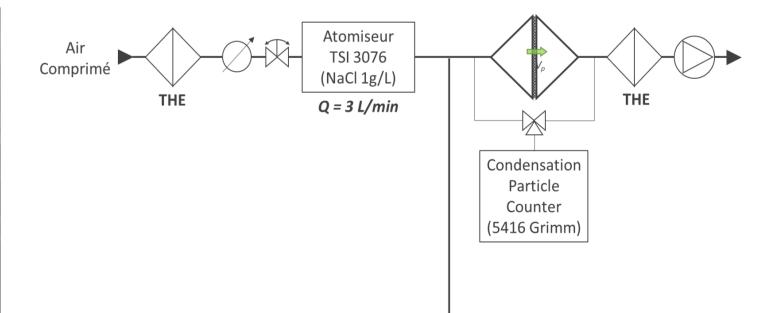


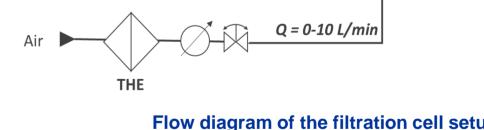
Ventilated tunnel illustration

Results

Experimental setup approved by DGA* Over 500 fabrics reference tested

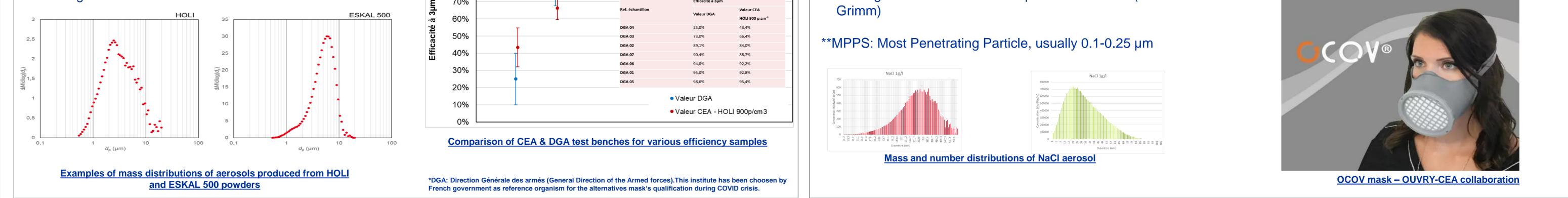



Filtration cell for sub-micron testing


Objective

Evaluation of collection efficiency for < 0.6µm challenge particles. This experimental setup was mounted and made available to SMEs during COVID crisis to screen for promising candidates for chirurgical / FFP masks

Bench Description



Aerosol Type and Description

- A NaCl aerosol is produced by atomization (TSI 3076) of a 1g.L⁻¹ NaCl solution
- Mass median diameter of NaCl aerosol : 0.3 μm

Results

- Hundreds of medias tested for various SMEs
- Joint development with OUVRY of a commercially

Conclusions and perspectives:

These test benches, which did not exist a few months ago, have made it possible to respond quickly to the explosion in demand for the qualification of fabrics intended for alternative and FFP masks manufacturing during COVID crisis. They relied on expertise and equipment present in most laboratories working with aerosols.

Apart from qualification of new candidates as filtration media, the Nanosafety Platform also took part in studies on mask reusability (washing impact on collection efficiency, re-charging processes)

